
Update on
Static Keys

LSF/MM/BPF 2025

Anton Protopopov

(now part of Cisco)

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk


BPF Static Keys: RFC

● I’ve recently posted an RFC which implements instruction sets 

and static keys

● Let’s take a look at API to be on the same page

● Then there are a few open question

● See [1], [2], [3] for more details on the [evolution of] design

https://lore.kernel.org/bpf/20250318143318.656785-1-aspsk@isovalent.com/
https://lpc.events/event/17/contributions/1608/
http://oldvger.kernel.org/bpfconf2024_material/bpf_static_keys.pdf
https://lpc.events/event/18/contributions/1941/


A new BPF map: Instruction Set

r0 = 17

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

BPF Program
1
42

INSN_SET map

33

INSN_SET map

Load, verify, relocate
r0 = 17

goto +0
r0 = 0
exit

r1 = map

…

call 0x6
goto pc-42

r2 = 42

…

…

BPF Program

3
47

INSN_SET map

35

INSN_SET map

…
…

…
…

…
…



Instruction Sets: API



Instruction Sets: API, continued



Instruction Sets: API, continued

(Now the prog is loaded, and the map can be dumped by userspace. See the 
prog_tests/bpf_insn_set.c selftest for examples.)



Instruction Sets: API

● In its simplest form INSN_SET can only be used for debugging. 

(If this turns out to be useful, this is possible to add xlated -> 

jitted info as well.)

● For practical use, there will be added more flavours:

○ BPF_F_STATIC_KEY: static keys

○ BPF_F_CALL_TABLE: indirect calls

○ BPF_F_JUMP_TABLE: indirect jumps



Static Keys: Kernel API



Static Keys: Kernel API

RFC defines this helper (but also see next slides)



Static Keys: Kernel API



Static Keys: libbpf

● Libbpf finds all the required static keys info in .static_keys 

and .rel.static_keys, creates and freezes maps, populates 

the fd_array/fd_array_cnt

● Now the bpf(STATIC_KEY_UPDATE, on/off) syscall can be 

used to toggle the branches on/off

● uAPI problem: the key is only defined for one program (see the 

next slides)



BPF Static Keys: problems with API



BPF Static Keys: problems with API

From “normal” BPF perspective, this 
code is correct. However, one particular 
static key only makes sense in the 
context of one program. Even if 
prog1/prog2 do not use the key 
directly, for the sub-program foo() the 
offsets will be different on each load.



Static Keys: libbpf

● So, on object load libbpf should actually create multiple 
instances of key: prog1.key, prog2.key

● Should work fine, but now users have to keep track of the keys, 
e.g., when adding/removing progs to/from an object

● Better to provide a wrapper: 
bpf_object__static_key_update()

● Should this be done on object-level? Generated for a 
skeleton? Alternatives?



BPF Static Keys: which instruction to use?

● Namely, may_goto vs. “special” BPF_JA

● (99% answer is may_goto; RFC still uses BPF_JA and thus should 

be changed)



Thanks!

https://www.linkedin.com/in/aspsk/
https://github.com/aspsk

